Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Methods Mol Biol ; 2610: 187-199, 2023.
Article in English | MEDLINE | ID: covidwho-2173498

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 causes worldwide COVID-19 pandemic and poses a great threat to global public health. Due to its high pathogenicity and infectivity, live SARS-CoV-2 is classified as a BSL-3 agent and has to be handled in BSL-3 condition. Nevertheless, entry of SARS-CoV-2 is mediated by viral spike (S) glycoprotein, and pseudovirus with SARS-CoV-2 S protein can mimic every entry step of SARS-CoV-2 virus and be studied in BSL-2 settings. In this chapter, we describe a detailed protocol of production of lentivirus-based SARS-CoV-2 S pseudovirus and its application in study of virus entry and determination of neutralizing antibody titer of human sera against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antibodies, Viral , Neutralization Tests/methods , Pandemics , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus , Glycoproteins
2.
Bio Protoc ; 11(21): e4236, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1527087

ABSTRACT

This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.

3.
Viruses ; 12(5)2020 05 06.
Article in English | MEDLINE | ID: covidwho-1389513

ABSTRACT

SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.


Subject(s)
Antibodies, Viral/immunology , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Containment of Biohazards , HEK293 Cells , Humans , Lentivirus , Peptidyl-Dipeptidase A/metabolism , Plasma/immunology
4.
Cell Rep ; 33(12): 108528, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-978234

ABSTRACT

Soluble forms of angiotensin-converting enzyme 2 (ACE2) have recently been shown to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report on an improved soluble ACE2, termed a "microbody," in which the ACE2 ectodomain is fused to Fc domain 3 of the immunoglobulin (Ig) heavy chain. The protein is smaller than previously described ACE2-Ig Fc fusion proteins and contains an H345A mutation in the ACE2 catalytic active site that inactivates the enzyme without reducing its affinity for the SARS-CoV-2 spike. The disulfide-bonded ACE2 microbody protein inhibits entry of SARS-CoV-2 spike protein pseudotyped virus and replication of live SARS-CoV-2 in vitro and in a mouse model. Its potency is 10-fold higher than soluble ACE2, and it can act after virus bound to the cell. The microbody inhibits the entry of ß coronaviruses and virus with the variant D614G spike. The ACE2 microbody may be a valuable therapeutic for coronavirus disease 2019 (COVID-19) that is active against viral variants and future coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Immunoglobulin Fc Fragments/metabolism , Microbodies/metabolism , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , COVID-19/prevention & control , COVID-19/virology , Disease Models, Animal , Disulfides/metabolism , Female , HEK293 Cells , Humans , Male , Mice, Transgenic , Protein Domains , Protein Multimerization , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL